Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Topology Inference for Network Systems: Causality Perspective and Non-asymptotic Performance (2106.01031v2)

Published 2 Jun 2021 in eess.SP and cs.MA

Abstract: Topology inference for network systems (NSs) plays a crucial role in many areas. This paper advocates a causality-based method based on noisy observations from a single trajectory of a NS, which is represented by the state-space model with general directed topology. Specifically, we first prove its close relationships with the ideal Granger estimator for multiple trajectories and the traditional ordinary least squares (OLS) estimator for a single trajectory. Along with this line, we analyze the non-asymptotic inference performance of the proposed method by taking the OLS estimator as a reference, covering both asymptotically and marginally stable systems. The derived convergence rates and accuracy results suggest the proposed method has better performance in addressing potentially correlated observations and achieves zero inference error asymptotically. Besides, an online/recursive version of our method is established for efficient computation or time-varying cases. Extensions on NSs with nonlinear dynamics are also discussed. Comprehensive tests corroborate the theoretical findings and comparisons with other algorithms highlight the superiority of the proposed method.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.