Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Multi-Level Attention Model for Evidence-Based Fact Checking (2106.00950v1)

Published 2 Jun 2021 in cs.CL

Abstract: Evidence-based fact checking aims to verify the truthfulness of a claim against evidence extracted from textual sources. Learning a representation that effectively captures relations between a claim and evidence can be challenging. Recent state-of-the-art approaches have developed increasingly sophisticated models based on graph structures. We present a simple model that can be trained on sequence structures. Our model enables inter-sentence attentions at different levels and can benefit from joint training. Results on a large-scale dataset for Fact Extraction and VERification (FEVER) show that our model outperforms the graph-based approaches and yields 1.09% and 1.42% improvements in label accuracy and FEVER score, respectively, over the best published model.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.