Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Feedback Interconnected Mean-Field Density Estimation and Control (2106.00899v3)

Published 2 Jun 2021 in eess.SY and cs.SY

Abstract: Swarm robotic systems have foreseeable applications in the near future. Recently, there has been an increasing amount of literature that employs mean-field partial differential equations (PDEs) to model the time-evolution of the probability density of swarm robotic systems and uses density feedback to design stabilizing control laws that act on individuals such that their density converges to a target profile. However, it remains largely unexplored considering problems of how to estimate the mean-field density, how the density estimation algorithms affect the control performance, and whether the estimation performance in turn depends on the control algorithms. In this work, we focus on studying the interplay of these algorithms. Specifically, we propose new density control laws which use the mean-field density and its gradient as feedback, and prove that they are globally input-to-state stable (ISS) with respect to estimation errors. Then, we design filtering algorithms to estimate the density and its gradient separately, and prove that these estimates are convergent assuming the control laws are known. Finally, we show that the feedback interconnection of these estimation and control algorithms is still globally ISS, which is attributed to the bilinearity of the PDE system. An agent-based simulation is included to verify the stability of these algorithms and their feedback interconnection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.