Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Necessary and Sufficient Girth Conditions for LDPC Tanner Graphs with Denser Protographs (2106.00861v1)

Published 1 Jun 2021 in cs.IT and math.IT

Abstract: This paper gives necessary and sufficient conditions for the Tanner graph of a quasi-cyclic (QC) low-density parity-check (LDPC) code based on the all-one protograph to have girth 6, 8, 10, and 12, respectively, in the case of parity-check matrices with column weight 4. These results are a natural extension of the girth results of the already-studied cases of column weight 2 and 3, and it is based on the connection between the girth of a Tanner graph given by a parity-check matrix and the properties of powers of the product between the matrix and its transpose. The girth conditions can be easily incorporated into fast algorithms that construct codes of desired girth between 6 and 12; our own algorithms are presented for each girth, together with constructions obtained from them and corresponding computer simulations. More importantly, this paper emphasizes how the girth conditions of the Tanner graph corresponding to a parity-check matrix composed of circulants relate to the matrix obtained by adding (over the integers) the circulant columns of the parity-check matrix. In particular, we show that imposing girth conditions on a parity-check matrix is equivalent to imposing conditions on a square circulant submatrix of size 4 obtained from it.

Citations (1)

Summary

We haven't generated a summary for this paper yet.