Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On Finding the $K$-best Non-projective Dependency Trees (2106.00780v1)

Published 1 Jun 2021 in cs.CL

Abstract: The connection between the maximum spanning tree in a directed graph and the best dependency tree of a sentence has been exploited by the NLP community. However, for many dependency parsing schemes, an important detail of this approach is that the spanning tree must have exactly one edge emanating from the root. While work has been done to efficiently solve this problem for finding the one-best dependency tree, no research has attempted to extend this solution to finding the $K$-best dependency trees. This is arguably a more important extension as a larger proportion of decoded trees will not be subject to the root constraint of dependency trees. Indeed, we show that the rate of root constraint violations increases by an average of $13$ times when decoding with $K!=!50$ as opposed to $K!=!1$. In this paper, we provide a simplification of the $K$-best spanning tree algorithm of Camerini et al. (1980). Our simplification allows us to obtain a constant time speed-up over the original algorithm. Furthermore, we present a novel extension of the algorithm for decoding the $K$-best dependency trees of a graph which are subject to a root constraint.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube