Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network (2106.00719v2)

Published 1 Jun 2021 in cs.LG and stat.ML

Abstract: This paper presents an efficient variational inference framework for deriving a family of structured gaussian process regression network (SGPRN) models. The key idea is to incorporate auxiliary inducing variables in latent functions and jointly treats both the distributions of the inducing variables and hyper-parameters as variational parameters. Then we propose structured variable distributions and marginalize latent variables, which enables the decomposability of a tractable variational lower bound and leads to stochastic optimization. Our inference approach is able to model data in which outputs do not share a common input set with a computational complexity independent of the size of the inputs and outputs and thus easily handle datasets with missing values. We illustrate the performance of our method on synthetic data and real datasets and show that our model generally provides better imputation results on missing data than the state-of-the-art. We also provide a visualization approach for time-varying correlation across outputs in electrocoticography data and those estimates provide insight to understand the neural population dynamics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.