Papers
Topics
Authors
Recent
2000 character limit reached

Gauss-Seidel Method with Oblique Direction (2106.00594v1)

Published 1 Jun 2021 in math.NA and cs.NA

Abstract: In this paper, a Gauss-Seidel method with oblique direction (GSO) is proposed for finding the least-squares solution to a system of linear equations, where the coefficient matrix may be full rank or rank deficient and the system is overdetermined or underdetermined. Through this method, the number of iteration steps and running time can be reduced to a greater extent to find the least-squares solution, especially when the columns of matrix A are close to linear correlation. It is theoretically proved that GSO method converges to the least-squares solution. At the same time, a randomized version--randomized Gauss-Seidel method with oblique direction (RGSO) is established, and its convergence is proved. Theoretical proof and numerical results show that the GSO method and the RGSO method are more efficient than the coordinate descent (CD) method and the randomized coordinate descent (RCD) method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.