Papers
Topics
Authors
Recent
2000 character limit reached

Improving Long-Term Metrics in Recommendation Systems using Short-Horizon Reinforcement Learning (2106.00589v2)

Published 1 Jun 2021 in cs.LG

Abstract: We study session-based recommendation scenarios where we want to recommend items to users during sequential interactions to improve their long-term utility. Optimizing a long-term metric is challenging because the learning signal (whether the recommendations achieved their desired goals) is delayed and confounded by other user interactions with the system. Targeting immediately measurable proxies such as clicks can lead to suboptimal recommendations due to misalignment with the long-term metric. We develop a new reinforcement learning algorithm called Short Horizon Policy Improvement (SHPI) that approximates policy-induced drift in user behavior across sessions. SHPI is a straightforward modification of episodic RL algorithms for session-based recommendation, that additionally gives an appropriate termination bonus in each session. Empirical results on four recommendation tasks show that SHPI can outperform state-of-the-art recommendation techniques like matrix factorization with offline proxy signals, bandits with myopic online proxies, and RL baselines with limited amounts of user interaction.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.