Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fault-Tolerant Labeling and Compact Routing Schemes (2106.00374v1)

Published 1 Jun 2021 in cs.DS and cs.DC

Abstract: The paper presents fault-tolerant (FT) labeling schemes for general graphs, as well as, improved FT routing schemes. For a given $n$-vertex graph $G$ and a bound $f$ on the number of faults, an $f$-FT connectivity labeling scheme is a distributed data structure that assigns each of the graph edges and vertices a short label, such that given the labels of the vertices $s$ and $t$, and at most $f$ failing edges $F$, one can determine if $s$ and $t$ are connected in $G \setminus F$. The primary complexity measure is the length of the individual labels. Since their introduction by [Courcelle, Twigg, STACS '07], compact FT labeling schemes have been devised only for a limited collection of graph families. In this work, we fill in this gap by proposing two (independent) FT connectivity labeling schemes for general graphs, with a nearly optimal label length. This serves the basis for providing also FT approximate distance labeling schemes, and ultimately also routing schemes. Our main results for an $n$-vertex graph and a fault bound $f$ are: -- There is a randomized FT connectivity labeling scheme with a label length of $O(f+\log n)$ bits, hence optimal for $f=O(\log n)$. This scheme is based on the notion of cycle space sampling [Pritchard, Thurimella, TALG '11]. -- There is a randomized FT connectivity labeling scheme with a label length of $O(\log3 n)$ bits (independent of the number of faults $f$). This scheme is based on the notion of linear sketches of [Ahn et al., SODA '12]. -- For $k\geq 1$, there is a randomized routing scheme that routes a message from $s$ to $t$ in the presence of a set $F$ of faulty edges, with stretch $O(|F|2 k)$ and routing tables of size $\tilde{O}(f3 n{1/k})$. This significantly improves over the state-of-the-art bounds by [Chechik, ICALP '11], providing the first scheme with sub-linear FT labeling and routing schemes for general graphs.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube