Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Analysis of classifiers robust to noisy labels (2106.00274v1)

Published 1 Jun 2021 in cs.LG, cs.AI, cs.CV, and cs.DS

Abstract: We explore contemporary robust classification algorithms for overcoming class-dependant labelling noise: Forward, Importance Re-weighting and T-revision. The classifiers are trained and evaluated on class-conditional random label noise data while the final test data is clean. We demonstrate methods for estimating the transition matrix in order to obtain better classifier performance when working with noisy data. We apply deep learning to three data-sets and derive an end-to-end analysis with unknown noise on the CIFAR data-set from scratch. The effectiveness and robustness of the classifiers are analysed, and we compare and contrast the results of each experiment are using top-1 accuracy as our criterion.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube