Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Graph-based Exercise- and Knowledge-Aware Learning Network for Student Performance Prediction (2106.00263v1)

Published 1 Jun 2021 in cs.AI

Abstract: Predicting student performance is a fundamental task in Intelligent Tutoring Systems (ITSs), by which we can learn about students' knowledge level and provide personalized teaching strategies for them. Researchers have made plenty of efforts on this task. They either leverage educational psychology methods to predict students' scores according to the learned knowledge proficiency, or make full use of Collaborative Filtering (CF) models to represent latent factors of students and exercises. However, most of these methods either neglect the exercise-specific characteristics (e.g., exercise materials), or cannot fully explore the high-order interactions between students, exercises, as well as knowledge concepts. To this end, we propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction. Specifically, we learn students' mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts. Then, to model the high-order interactions, we apply graph convolution techniques in the prediction process. Extensive experiments on two real-world datasets prove the effectiveness of our proposed Graph-EKLN.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube