Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probabilistic Deep Learning with Probabilistic Neural Networks and Deep Probabilistic Models (2106.00120v3)

Published 31 May 2021 in cs.LG and stat.ML

Abstract: Probabilistic deep learning is deep learning that accounts for uncertainty, both model uncertainty and data uncertainty. It is based on the use of probabilistic models and deep neural networks. We distinguish two approaches to probabilistic deep learning: probabilistic neural networks and deep probabilistic models. The former employs deep neural networks that utilize probabilistic layers which can represent and process uncertainty; the latter uses probabilistic models that incorporate deep neural network components which capture complex non-linear stochastic relationships between the random variables. We discuss some major examples of each approach including Bayesian neural networks and mixture density networks (for probabilistic neural networks), and variational autoencoders, deep Gaussian processes and deep mixed effects models (for deep probabilistic models). TensorFlow Probability is a library for probabilistic modeling and inference which can be used for both approaches of probabilistic deep learning. We include its code examples for illustration.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube