Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Effect of Pre-Training Scale on Intra- and Inter-Domain Full and Few-Shot Transfer Learning for Natural and Medical X-Ray Chest Images (2106.00116v4)

Published 31 May 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Increasing model, data and compute budget scale in the pre-training has been shown to strongly improve model generalization and transfer learning in vast line of work done in LLMing and natural image recognition. However, most studies on the positive effect of larger scale were done in scope of in-domain setting, with source and target data being in close proximity. To study effect of larger scale for both in-domain and out-of-domain setting when performing full and few-shot transfer, we combine here for the first time large, openly available medical X-Ray chest imaging datasets to reach a scale for medical imaging domain comparable to ImageNet-1k, routinely used for pre-training in natural image domain. We then conduct supervised pre-training, while varying network size and source data scale and domain, being either large natural (ImageNet-1k/21k) or large medical chest X-Ray datasets, and transfer pre-trained models to different natural or medical targets. We observe strong improvement due to larger pre-training scale for intra-domain natural-natural and medical-medical transfer. For inter-domain natural-medical transfer, we find improvements due to larger pre-training scale on larger X-Ray targets in full shot regime, while for smaller targets and for few-shot regime the improvement is not visible. Remarkably, large networks pre-trained on very large natural ImageNet-21k are as good or better than networks pre-trained on largest available medical X-Ray data when performing transfer to large X-Ray targets. We conclude that substantially increasing model and generic, medical domain-agnostic natural image source data scale in the pre-training can enable high quality out-of-domain transfer to medical domain specific targets, removing dependency on large medical domain-specific source data often not available in the practice.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.