Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Contextual Knowledge to Visual Features for Fine Art Classification (2105.15028v2)

Published 31 May 2021 in cs.CV

Abstract: Automatic art analysis has seen an ever-increasing interest from the pattern recognition and computer vision community. However, most of the current work is mainly based solely on digitized artwork images, sometimes supplemented with some metadata and textual comments. A knowledge graph that integrates a rich body of information about artworks, artists, painting schools, etc., in a unified structured framework can provide a valuable resource for more powerful information retrieval and knowledge discovery tools in the artistic domain. To this end, this paper presents ArtGraph: an artistic knowledge graph based on WikiArt and DBpedia. The graph, implemented in Neo4j, already provides knowledge discovery capabilities without having to train a learning system. In addition, the embeddings extracted from the graph are used to inject "contextual" knowledge into a deep learning model to improve the accuracy of artwork attribute prediction tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Giovanna Castellano (12 papers)
  2. Giovanni Sansaro (1 paper)
  3. Gennaro Vessio (17 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.