Papers
Topics
Authors
Recent
2000 character limit reached

Cascaded Head-colliding Attention (2105.14850v1)

Published 31 May 2021 in cs.CL and cs.LG

Abstract: Transformers have advanced the field of NLP on a variety of important tasks. At the cornerstone of the Transformer architecture is the multi-head attention (MHA) mechanism which models pairwise interactions between the elements of the sequence. Despite its massive success, the current framework ignores interactions among different heads, leading to the problem that many of the heads are redundant in practice, which greatly wastes the capacity of the model. To improve parameter efficiency, we re-formulate the MHA as a latent variable model from a probabilistic perspective. We present cascaded head-colliding attention (CODA) which explicitly models the interactions between attention heads through a hierarchical variational distribution. We conduct extensive experiments and demonstrate that CODA outperforms the transformer baseline, by $0.6$ perplexity on \texttt{Wikitext-103} in language modeling, and by $0.6$ BLEU on \texttt{WMT14 EN-DE} in machine translation, due to its improvements on the parameter efficiency.\footnote{Our implementation is publicly available at \url{https://github.com/LZhengisme/CODA}.}

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com