Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parallel transport dynamics for mixed quantum states with applications to time-dependent density functional theory (2105.14755v1)

Published 31 May 2021 in math.NA, cs.NA, physics.comp-ph, and quant-ph

Abstract: Direct simulation of the von Neumann dynamics for a general (pure or mixed) quantum state can often be expensive. One prominent example is the real-time time-dependent density functional theory (rt-TDDFT), a widely used framework for the first principle description of many-electron dynamics in chemical and materials systems. Practical rt-TDDFT calculations often avoid the direct simulation of the von Neumann equation, and solve instead a set of Schr\"odinger equations, of which the dynamics is equivalent to that of the von Neumann equation. However, the time step size employed by the Schr\"odinger dynamics is often much smaller. In order to improve the time step size and the overall efficiency of the simulation, we generalize a recent work of the parallel transport (PT) dynamics for simulating pure states [An, Lin, Multiscale Model. Simul. 18, 612, 2020] to general quantum states. The PT dynamics provides the optimal gauge choice, and can employ a time step size comparable to that of the von Neumann dynamics. Going beyond the linear and near adiabatic regime in previous studies, we find that the error of the PT dynamics can be bounded by certain commutators between Hamiltonians, density matrices, and their derived quantities. Such a commutator structure is not present in the Schr\"odinger dynamics. We demonstrate that the parallel transport-implicit midpoint (PT-IM) method is a suitable method for simulating the PT dynamics, especially when the spectral radius of the Hamiltonian is large. The commutator structure of the error bound, and numerical results for model rt-TDDFT calculations in both linear and nonlinear regimes, confirm the advantage of the PT dynamics.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)