Papers
Topics
Authors
Recent
2000 character limit reached

List-decoding and list-recovery of Reed-Solomon codes beyond the Johnson radius for any rate (2105.14754v1)

Published 31 May 2021 in cs.IT, math.CO, and math.IT

Abstract: Understanding the limits of list-decoding and list-recovery of Reed-Solomon (RS) codes is of prime interest in coding theory and has attracted a lot of attention in recent decades. However, the best possible parameters for these problems are still unknown, and in this paper, we take a step in this direction. We show the existence of RS codes that are list-decodable or list-recoverable beyond the Johnson radius for \emph{any} rate, with a polynomial field size in the block length. In particular, we show that for any $\epsilon\in (0,1)$ there exist RS codes that are list-decodable from radius $1-\epsilon$ and rate less than $\frac{\epsilon}{2-\epsilon}$, with constant list size. We deduce our results by extending and strengthening a recent result of Ferber, Kwan, and Sauermann on puncturing codes with large minimum distance and by utilizing the underlying code's linearity.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.