Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

List-decoding and list-recovery of Reed-Solomon codes beyond the Johnson radius for any rate (2105.14754v1)

Published 31 May 2021 in cs.IT, math.CO, and math.IT

Abstract: Understanding the limits of list-decoding and list-recovery of Reed-Solomon (RS) codes is of prime interest in coding theory and has attracted a lot of attention in recent decades. However, the best possible parameters for these problems are still unknown, and in this paper, we take a step in this direction. We show the existence of RS codes that are list-decodable or list-recoverable beyond the Johnson radius for \emph{any} rate, with a polynomial field size in the block length. In particular, we show that for any $\epsilon\in (0,1)$ there exist RS codes that are list-decodable from radius $1-\epsilon$ and rate less than $\frac{\epsilon}{2-\epsilon}$, with constant list size. We deduce our results by extending and strengthening a recent result of Ferber, Kwan, and Sauermann on puncturing codes with large minimum distance and by utilizing the underlying code's linearity.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.