Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Joint Stabilization and Regret Minimization through Switching in Over-Actuated Systems (extended version) (2105.14709v2)

Published 31 May 2021 in eess.SY and cs.SY

Abstract: Adaptively controlling and minimizing regret in unknown dynamical systems while controlling the growth of the system state is crucial in real-world applications. In this work, we study the problem of stabilization and regret minimization of linear over-actuated dynamical systems. We propose an optimism-based algorithm that leverages possibility of switching between actuating modes in order to alleviate state explosion during initial time steps. We theoretically study the rate at which our algorithm learns a stabilizing controller and prove that it achieves a regret upper bound of $\mathcal{O}(\sqrt{T})$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.