Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Blockchain Assisted Federated Learning over Wireless Channels: Dynamic Resource Allocation and Client Scheduling (2105.14708v3)

Published 31 May 2021 in cs.DC

Abstract: The blockchain technology has been extensively studied to enable distributed and tamper-proof data processing in federated learning (FL). Most existing blockchain assisted FL (BFL) frameworks have employed a third-party blockchain network to decentralize the model aggregation process. However, decentralized model aggregation is vulnerable to pooling and collusion attacks from the third-party blockchain network. Driven by this issue, we propose a novel BFL framework that features the integration of training and mining at the client side. To optimize the learning performance of FL, we propose to maximize the long-term time average (LTA) training data size under a constraint of LTA energy consumption. To this end, we formulate a joint optimization problem of training client selection and resource allocation (i.e., the transmit power and computation frequency at the client side), and solve the long-term mixed integer non-linear programming based on a Lyapunov technique. In particular, the proposed dynamic resource allocation and client scheduling (DRACS) algorithm can achieve a trade-off of [$\mathcal{O}(1/V)$, $\mathcal{O}(\sqrt{V})$] to balance the maximization of the LTA training data size and the minimization of the LTA energy consumption with a control parameter $V$. Our experimental results show that the proposed DRACS algorithm achieves better learning accuracy than benchmark client scheduling strategies with limited time or energy consumption.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.