Papers
Topics
Authors
Recent
2000 character limit reached

Zero-shot Fact Verification by Claim Generation (2105.14682v1)

Published 31 May 2021 in cs.CL and cs.AI

Abstract: Neural models for automated fact verification have achieved promising results thanks to the availability of large, human-annotated datasets. However, for each new domain that requires fact verification, creating a dataset by manually writing claims and linking them to their supporting evidence is expensive. We develop QACG, a framework for training a robust fact verification model by using automatically generated claims that can be supported, refuted, or unverifiable from evidence from Wikipedia. QACG generates question-answer pairs from the evidence and then converts them into different types of claims. Experiments on the FEVER dataset show that our QACG framework significantly reduces the demand for human-annotated training data. In a zero-shot scenario, QACG improves a RoBERTa model's F1 from 50% to 77%, equivalent in performance to 2K+ manually-curated examples. Our QACG code is publicly available.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.