Papers
Topics
Authors
Recent
2000 character limit reached

CNN Retrieval based Unsupervised Metric Learning for Near-Duplicated Video Retrieval (2105.14566v1)

Published 30 May 2021 in cs.IR

Abstract: As important data carriers, the drastically increasing number of multimedia videos often brings many duplicate and near-duplicate videos in the top results of search. Near-duplicate video retrieval (NDVR) can cluster and filter out the redundant contents. In this paper, the proposed NDVR approach extracts the frame-level video representation based on convolutional neural network (CNN) features from fully-connected layer and aggregated intermediate convolutional layers. Unsupervised metric learning is used for similarity measurement and feature matching. An efficient re-ranking algorithm combined with k-nearest neighborhood fuses the retrieval results from two levels of features and further improves the retrieval performance. Extensive experiments on the widely used CC_WEB_VIDEO dataset shows that the proposed approach exhibits superior performance over the state-of-the-art.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.