Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust Dynamic Network Embedding via Ensembles (2105.14557v2)

Published 30 May 2021 in cs.SI, cs.AI, and cs.LG

Abstract: Dynamic Network Embedding (DNE) has recently attracted considerable attention due to the advantage of network embedding in various fields and the dynamic nature of many real-world networks. An input dynamic network to DNE is often assumed to have smooth changes over snapshots, which however would not hold for all real-world scenarios. It is natural to ask if existing DNE methods can perform well for an input dynamic network without smooth changes. To quantify it, an index called Degree of Changes (DoCs) is suggested so that the smaller DoCs indicates the smoother changes. Our comparative study shows several DNE methods are not robust enough to different DoCs even if the corresponding input dynamic networks come from the same dataset, which would make these methods unreliable and hard to use for unknown real-world applications. To propose an effective and more robust DNE method, we follow the notion of ensembles where each base learner adopts an incremental Skip-Gram embedding model. To further boost the performance, a simple yet effective strategy is designed to enhance the diversity among base learners at each timestep by capturing different levels of local-global topology. Extensive experiments demonstrate the superior effectiveness and robustness of the proposed method compared to state-of-the-art DNE methods, as well as the benefits of special designs in the proposed method and its scalability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.