Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

RFCBF: enhance the performance and stability of Fast Correlation-Based Filter (2105.14519v1)

Published 30 May 2021 in cs.LG

Abstract: Feature selection is a preprocessing step which plays a crucial role in the domain of machine learning and data mining. Feature selection methods have been shown to be effctive in removing redundant and irrelevant features, improving the learning algorithm's prediction performance. Among the various methods of feature selection based on redundancy, the fast correlation-based filter (FCBF) is one of the most effective. In this paper, we proposed a novel extension of FCBF, called RFCBF, which combines resampling technique to improve classification accuracy. We performed comprehensive experiments to compare the RFCBF with other state-of-the-art feature selection methods using the KNN classifier on 12 publicly available data sets. The experimental results show that the RFCBF algorithm yields significantly better results than previous state-of-the-art methods in terms of classification accuracy and runtime.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.