Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Pre-training Universal Language Representation (2105.14478v1)

Published 30 May 2021 in cs.CL and cs.AI

Abstract: Despite the well-developed cut-edge representation learning for language, most language representation models usually focus on specific levels of linguistic units. This work introduces universal language representation learning, i.e., embeddings of different levels of linguistic units or text with quite diverse lengths in a uniform vector space. We propose the training objective MiSAD that utilizes meaningful n-grams extracted from large unlabeled corpus by a simple but effective algorithm for pre-trained LLMs. Then we empirically verify that well designed pre-training scheme may effectively yield universal language representation, which will bring great convenience when handling multiple layers of linguistic objects in a unified way. Especially, our model achieves the highest accuracy on analogy tasks in different language levels and significantly improves the performance on downstream tasks in the GLUE benchmark and a question answering dataset.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)