Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Deconvolutional Density Network: Modeling Free-Form Conditional Distributions (2105.14367v3)

Published 29 May 2021 in cs.LG and stat.ML

Abstract: Conditional density estimation (CDE) is the task of estimating the probability of an event conditioned on some inputs. A neural network (NN) can also be used to compute the output distribution for continuous-domain, which can be viewed as an extension of regression task. Nevertheless, it is difficult to explicitly approximate a distribution without knowing the information of its general form a priori. In order to fit an arbitrary conditional distribution, discretizing the continuous domain into bins is an effective strategy, as long as we have sufficiently narrow bins and very large data. However, collecting enough data is often hard to reach and falls far short of that ideal in many circumstances, especially in multivariate CDE for the curse of dimensionality. In this paper, we demonstrate the benefits of modeling free-form conditional distributions using a deconvolution-based neural net framework, coping with data deficiency problems in discretization. It has the advantage of being flexible but also takes advantage of the hierarchical smoothness offered by the deconvolution layers. We compare our method to a number of other density-estimation approaches and show that our Deconvolutional Density Network (DDN) outperforms the competing methods on many univariate and multivariate tasks. The code of DDN is available at https://github.com/NBICLAB/DDN.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.