Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Conditional Deep Convolutional Neural Networks for Improving the Automated Screening of Histopathological Images (2105.14338v1)

Published 29 May 2021 in eess.IV and cs.CV

Abstract: Semantic segmentation of breast cancer metastases in histopathological slides is a challenging task. In fact, significant variation in data characteristics of histopathology images (domain shift) make generalization of deep learning to unseen data difficult. Our goal is to address this challenge by using a conditional Fully Convolutional Network (co-FCN) whose output can be conditioned at run time, and which can improve its performance when a properly selected set of reference slides are used to condition the output. We adapted to our task a co-FCN originally applied to organs segmentation in volumetric medical images and we trained it on the Whole Slide Images (WSIs) from three out of five medical centers present in the CAMELYON17 dataset. We tested the performance of the network on the WSIs of the remaining centers. We also developed an automated selection strategy for selecting the conditioning subset, based on an unsupervised clustering process applied to a target-specific set of reference patches, followed by a selection policy that relies on the cluster similarities with the input patch. We benchmarked our proposed method against a U-Net trained on the same dataset with no conditioning. The conditioned network shows better performance that the U-Net on the WSIs with Isolated Tumor Cells and micro-metastases from the medical centers used as test. Our contributions are an architecture which can be applied to the histopathology domain and an automated procedure for the selection of conditioning data.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.