Papers
Topics
Authors
Recent
2000 character limit reached

Towards optimally abstaining from prediction with OOD test examples (2105.14119v2)

Published 28 May 2021 in cs.LG, cs.AI, cs.DS, and stat.ML

Abstract: A common challenge across all areas of machine learning is that training data is not distributed like test data, due to natural shifts, "blind spots," or adversarial examples; such test examples are referred to as out-of-distribution (OOD) test examples. We consider a model where one may abstain from predicting, at a fixed cost. In particular, our transductive abstention algorithm takes labeled training examples and unlabeled test examples as input, and provides predictions with optimal prediction loss guarantees. The loss bounds match standard generalization bounds when test examples are i.i.d. from the training distribution, but add an additional term that is the cost of abstaining times the statistical distance between the train and test distribution (or the fraction of adversarial examples). For linear regression, we give a polynomial-time algorithm based on Celis-Dennis-Tapia optimization algorithms. For binary classification, we show how to efficiently implement it using a proper agnostic learner (i.e., an Empirical Risk Minimizer) for the class of interest. Our work builds on a recent abstention algorithm of Goldwasser, Kalais, and Montasser (2020) for transductive binary classification.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.