Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Evaluation of Rating Systems in Team-based Battle Royale Games (2105.14069v2)

Published 28 May 2021 in cs.IR, cs.AI, and cs.PF

Abstract: Online competitive games have become a mainstream entertainment platform. To create a fair and exciting experience, these games use rating systems to match players with similar skills. While there has been an increasing amount of research on improving the performance of these systems, less attention has been paid to how their performance is evaluated. In this paper, we explore the utility of several metrics for evaluating three popular rating systems on a real-world dataset of over 25,000 team battle royale matches. Our results suggest considerable differences in their evaluation patterns. Some metrics were highly impacted by the inclusion of new players. Many could not capture the real differences between certain groups of players. Among all metrics studied, normalized discounted cumulative gain (NDCG) demonstrated more reliable performance and more flexibility. It alleviated most of the challenges faced by the other metrics while adding the freedom to adjust the focus of the evaluations on different groups of players.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.