Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

What if This Modified That? Syntactic Interventions via Counterfactual Embeddings (2105.14002v2)

Published 28 May 2021 in cs.CL

Abstract: Neural LLMs exhibit impressive performance on a variety of tasks, but their internal reasoning may be difficult to understand. Prior art aims to uncover meaningful properties within model representations via probes, but it is unclear how faithfully such probes portray information that the models actually use. To overcome such limitations, we propose a technique, inspired by causal analysis, for generating counterfactual embeddings within models. In experiments testing our technique, we produce evidence that suggests some BERT-based models use a tree-distance-like representation of syntax in downstream prediction tasks.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com