Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Facial Attribute Recognition by Group and Graph Learning (2105.13825v1)

Published 28 May 2021 in cs.CV

Abstract: Exploiting the relationships between attributes is a key challenge for improving multiple facial attribute recognition. In this work, we are concerned with two types of correlations that are spatial and non-spatial relationships. For the spatial correlation, we aggregate attributes with spatial similarity into a part-based group and then introduce a Group Attention Learning to generate the group attention and the part-based group feature. On the other hand, to discover the non-spatial relationship, we model a group-based Graph Correlation Learning to explore affinities of predefined part-based groups. We utilize such affinity information to control the communication between all groups and then refine the learned group features. Overall, we propose a unified network called Multi-scale Group and Graph Network. It incorporates these two newly proposed learning strategies and produces coarse-to-fine graph-based group features for improving facial attribute recognition. Comprehensive experiments demonstrate that our approach outperforms the state-of-the-art methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube