Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GCN-SL: Graph Convolutional Networks with Structure Learning for Graphs under Heterophily (2105.13795v2)

Published 28 May 2021 in cs.LG

Abstract: In representation learning on the graph-structured data, under heterophily (or low homophily), many popular GNNs may fail to capture long-range dependencies, which leads to their performance degradation. To solve the above-mentioned issue, we propose a graph convolutional networks with structure learning (GCN-SL), and furthermore, the proposed approach can be applied to node classification. The proposed GCN-SL contains two improvements: corresponding to node features and edges, respectively. In the aspect of node features, we propose an efficient-spectral-clustering (ESC) and an ESC with anchors (ESC-ANCH) algorithms to efficiently aggregate feature representations from all similar nodes. In the aspect of edges, we build a re-connected adjacency matrix by using a special data preprocessing technique and similarity learning, and the re-connected adjacency matrix can be optimized directly along with GCN-SL parameters. Considering that the original adjacency matrix may provide misleading information for aggregation in GCN, especially the graphs being with a low level of homophily. The proposed GCN-SL can aggregate feature representations from nearby nodes via re-connected adjacency matrix and is applied to graphs with various levels of homophily. Experimental results on a wide range of benchmark datasets illustrate that the proposed GCN-SL outperforms the stateof-the-art GNN counterparts.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.