Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic Intervention for Causal Inference via Reinforcement Learning (2105.13514v1)

Published 28 May 2021 in cs.AI and cs.LG

Abstract: Causal inference methods are widely applied in various decision-making domains such as precision medicine, optimal policy and economics. Central to causal inference is the treatment effect estimation of intervention strategies, such as changes in drug dosing and increases in financial aid. Existing methods are mostly restricted to the deterministic treatment and compare outcomes under different treatments. However, they are unable to address the substantial recent interest of treatment effect estimation under stochastic treatment, e.g., "how all units health status change if they adopt 50\% dose reduction". In other words, they lack the capability of providing fine-grained treatment effect estimation to support sound decision-making. In our study, we advance the causal inference research by proposing a new effective framework to estimate the treatment effect on stochastic intervention. Particularly, we develop a stochastic intervention effect estimator (SIE) based on nonparametric influence function, with the theoretical guarantees of robustness and fast convergence rates. Additionally, we construct a customised reinforcement learning algorithm based on the random search solver which can effectively find the optimal policy to produce the greatest expected outcomes for the decision-making process. Finally, we conduct an empirical study to justify that our framework can achieve significant performance in comparison with state-of-the-art baselines.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.