Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Diagnosing Transformers in Task-Oriented Semantic Parsing (2105.13496v1)

Published 27 May 2021 in cs.CL

Abstract: Modern task-oriented semantic parsing approaches typically use seq2seq transformers to map textual utterances to semantic frames comprised of intents and slots. While these models are empirically strong, their specific strengths and weaknesses have largely remained unexplored. In this work, we study BART and XLM-R, two state-of-the-art parsers, across both monolingual and multilingual settings. Our experiments yield several key results: transformer-based parsers struggle not only with disambiguating intents/slots, but surprisingly also with producing syntactically-valid frames. Though pre-training imbues transformers with syntactic inductive biases, we find the ambiguity of copying utterance spans into frames often leads to tree invalidity, indicating span extraction is a major bottleneck for current parsers. However, as a silver lining, we show transformer-based parsers give sufficient indicators for whether a frame is likely to be correct or incorrect, making them easier to deploy in production settings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)