Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Offline Risk-aware Policy Selection Method for Bayesian Markov Decision Processes (2105.13431v2)

Published 27 May 2021 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: In Offline Model Learning for Planning and in Offline Reinforcement Learning, the limited data set hinders the estimate of the Value function of the relative Markov Decision Process (MDP). Consequently, the performance of the obtained policy in the real world is bounded and possibly risky, especially when the deployment of a wrong policy can lead to catastrophic consequences. For this reason, several pathways are being followed with the scope of reducing the model error (or the distributional shift between the learned model and the true one) and, more broadly, obtaining risk-aware solutions with respect to model uncertainty. But when it comes to the final application which baseline should a practitioner choose? In an offline context where computational time is not an issue and robustness is the priority we propose Exploitation vs Caution (EvC), a paradigm that (1) elegantly incorporates model uncertainty abiding by the Bayesian formalism, and (2) selects the policy that maximizes a risk-aware objective over the Bayesian posterior between a fixed set of candidate policies provided, for instance, by the current baselines. We validate EvC with state-of-the-art approaches in different discrete, yet simple, environments offering a fair variety of MDP classes. In the tested scenarios EvC manages to select robust policies and hence stands out as a useful tool for practitioners that aim to apply offline planning and reinforcement learning solvers in the real world.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.