Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

$H^m$-Conforming Virtual Elements in Arbitrary Dimension (2105.12973v3)

Published 27 May 2021 in math.NA and cs.NA

Abstract: The $Hm$-conforming virtual elements of any degree $k$ on any shape of polytope in $\mathbb Rn$ with $m, n\geq1$ and $k\geq m$ are recursively constructed by gluing conforming virtual elements on faces in a universal way. For the lowest degree case $k=m$, the set of degrees of freedom only involves function values and derivatives up to order $m-1$ at the vertices of the polytope. The inverse inequality and several norm equivalences for the $Hm$-conforming virtual elements are rigorously proved. The $Hm$-conforming virtual elements are then applied to discretize a polyharmonic equation with a lower order term. With the help of the interpolation error estimate and norm equivalences, the optimal error estimates are derived for the $Hm$-conforming virtual element method.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)