Papers
Topics
Authors
Recent
2000 character limit reached

Convex Combination Belief Propagation Algorithms (2105.12815v2)

Published 26 May 2021 in cs.AI and stat.CO

Abstract: We present new message passing algorithms for performing inference with graphical models. Our methods are designed for the most difficult inference problems where loopy belief propagation and other heuristics fail to converge. Belief propagation is guaranteed to converge when the underlying graphical model is acyclic, but can fail to converge and is sensitive to initialization when the underlying graph has complex topology. This paper describes modifications to the standard belief propagation algorithms that lead to methods that converge to unique solutions on graphical models with arbitrary topology and potential functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.