Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ATRIA: A Bit-Parallel Stochastic Arithmetic Based Accelerator for In-DRAM CNN Processing (2105.12781v1)

Published 26 May 2021 in cs.AR, cs.AI, cs.LG, and cs.NE

Abstract: With the rapidly growing use of Convolutional Neural Networks (CNNs) in real-world applications related to machine learning and AI, several hardware accelerator designs for CNN inference and training have been proposed recently. In this paper, we present ATRIA, a novel bit-pArallel sTochastic aRithmetic based In-DRAM Accelerator for energy-efficient and high-speed inference of CNNs. ATRIA employs light-weight modifications in DRAM cell arrays to implement bit-parallel stochastic arithmetic based acceleration of multiply-accumulate (MAC) operations inside DRAM. ATRIA significantly improves the latency, throughput, and efficiency of processing CNN inferences by performing 16 MAC operations in only five consecutive memory operation cycles. We mapped the inference tasks of four benchmark CNNs on ATRIA to compare its performance with five state-of-the-art in-DRAM CNN accelerators from prior work. The results of our analysis show that ATRIA exhibits only 3.5% drop in CNN inference accuracy and still achieves improvements of up to 3.2x in frames-per-second (FPS) and up to 10x in efficiency (FPS/W/mm2), compared to the best-performing in-DRAM accelerator from prior work.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube