Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DeepGaze IIE: Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling (2105.12441v3)

Published 26 May 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Since 2014 transfer learning has become the key driver for the improvement of spatial saliency prediction; however, with stagnant progress in the last 3-5 years. We conduct a large-scale transfer learning study which tests different ImageNet backbones, always using the same read out architecture and learning protocol adopted from DeepGaze II. By replacing the VGG19 backbone of DeepGaze II with ResNet50 features we improve the performance on saliency prediction from 78% to 85%. However, as we continue to test better ImageNet models as backbones (such as EfficientNetB5) we observe no additional improvement on saliency prediction. By analyzing the backbones further, we find that generalization to other datasets differs substantially, with models being consistently overconfident in their fixation predictions. We show that by combining multiple backbones in a principled manner a good confidence calibration on unseen datasets can be achieved. This new model, "DeepGaze IIE", yields a significant leap in benchmark performance in and out-of-domain with a 15 percent point improvement over DeepGaze II to 93% on MIT1003, marking a new state of the art on the MIT/Tuebingen Saliency Benchmark in all available metrics (AUC: 88.3%, sAUC: 79.4%, CC: 82.4%).

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.