Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adapting Software Architectures to Machine Learning Challenges (2105.12422v2)

Published 26 May 2021 in cs.SE

Abstract: Unique developmental and operational characteristics of ML components as well as their inherent uncertainty demand robust engineering principles are used to ensure their quality. We aim to determine how software systems can be (re-) architected to enable robust integration of ML components. Towards this goal, we conducted a mixed-methods empirical study consisting of (i) a systematic literature review to identify the challenges and their solutions in software architecture for ML, (ii) semi-structured interviews with practitioners to qualitatively complement the initial findings and (iii) a survey to quantitatively validate the challenges and their solutions. We compiled and validated twenty challenges and solutions for (re-) architecting systems with ML components. Our results indicate, for example, that traditional software architecture challenges (e.g., component coupling) also play an important role when using ML components; along with new ML specific challenges (e.g., the need for continuous retraining). Moreover, the results indicate that ML heightened decision drivers, such as privacy, play a marginal role compared to traditional decision drivers, such as scalability. Using the survey we were able to establish a link between architectural solutions and software quality attributes, which enabled us to provide twenty architectural tactics used to satisfy individual quality requirements of systems with ML components. Altogether, the results of the study can be interpreted as an empirical framework that supports the process of (re-) architecting software systems with ML components.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.