Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Time integration schemes for fluid-structure interaction problems: non fitted FEMs for immersed thin structures (2105.12379v1)

Published 26 May 2021 in math.NA and cs.NA

Abstract: We analyse three time integration schemes for unfitted methods in fluid structure interaction. In Alghorithm 1 we propose a fully discrete monolithic algorithm with P1 P1 stabilized finite elements for the fluid problem; for this alghorithm we prove well-posedness, unconditional stability and convergence in the case of linearized problem (see Propositions 2.4.2, 2.4.3 and Theorem 3.3.7, respectively). The analysis optimal convergence rates as expected from the Euler scheme, and the supposed regularity of the solution to the continuous problem. Moreover we introduce two algorithms that allow for a partitioning of the coupled problem by exploiting an explicit-implicit treatment of the transmission conditions. Algorithm 2 represents, essentially, a simplification of Algorithm 1 since it simply treat the solid elastic forces in explicit form using the displacement and velocities of the structure evaluated in the previous time steps. Instead, Algorithm 3, is really a splitting algorithm that involves the solution of two staggered problems. It splits the forces that solid transfers to fluid in two contributions: the inertial contribution that is treated in implicit form and the elastic contribution that is treated in explicit form. We perform the stability analysis for both the schemes in Theorems 4.3.1 and 4.3.3. Algorithm 2 results conditionally stable for all the extrapolations considered, instead Algorithm 3 is unconditionally stable, for extrapolations of order zero and one, and conditionally stable for the extrapolation of order two. Since Algorithm 3 is the most promising, we perform the convergence analysis in the linearized case (see Theorem 4.4.2) obtaining results in line with those of the monolithic case, in particular the splitting introduced preserves optimal conevegence rates.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube