Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multiple Domain Experts Collaborative Learning: Multi-Source Domain Generalization For Person Re-Identification (2105.12355v2)

Published 26 May 2021 in cs.CV

Abstract: Recent years have witnessed significant progress in person re-identification (ReID). However, current ReID approaches still suffer from considerable performance degradation when unseen testing domains exhibit different characteristics from the source training ones, known as the domain generalization problem. Given multiple source training domains, previous Domain Generalizable ReID (DG-ReID) methods usually learn all domains together using a shared network, which can't learn sufficient knowledge from each domain. In this paper, we propose a novel Multiple Domain Experts Collaborative Learning (MECL) framework for better exploiting all training domains, which benefits from the proposed Domain-Domain Collaborative Learning (DDCL) and Universal-Domain Collaborative Learning (UDCL). DDCL utilizes domain-specific experts for fully exploiting each domain, and prevents experts from over-fitting the corresponding domain using a meta-learning strategy. In UDCL, a universal expert supervises the learning of domain experts and continuously gathers knowledge from all domain experts. Note, only the universal expert will be used for inference. Extensive experiments on DG-ReID benchmarks demonstrate the effectiveness of DDCL and UDCL, and show that the whole MECL framework significantly outperforms state-of-the-arts. Experimental results on DG-classification benchmarks also reveal the great potential of applying MECL to other DG tasks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.