Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Context-Sensitive Visualization of Deep Learning Natural Language Processing Models (2105.12202v1)

Published 25 May 2021 in cs.CL and cs.LG

Abstract: The introduction of Transformer neural networks has changed the landscape of NLP during the last years. So far, none of the visualization systems has yet managed to examine all the facets of the Transformers. This gave us the motivation of the current work. We propose a new NLP Transformer context-sensitive visualization method that leverages existing NLP tools to find the most significant groups of tokens (words) that have the greatest effect on the output, thus preserving some context from the original text. First, we use a sentence-level dependency parser to highlight promising word groups. The dependency parser creates a tree of relationships between the words in the sentence. Next, we systematically remove adjacent and non-adjacent tuples of \emph{n} tokens from the input text, producing several new texts with those tokens missing. The resulting texts are then passed to a pre-trained BERT model. The classification output is compared with that of the full text, and the difference in the activation strength is recorded. The modified texts that produce the largest difference in the target classification output neuron are selected, and the combination of removed words are then considered to be the most influential on the model's output. Finally, the most influential word combinations are visualized in a heatmap.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.