Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Few-Shot Learning with Part Discovery and Augmentation from Unlabeled Images (2105.11874v1)

Published 25 May 2021 in cs.CV

Abstract: Few-shot learning is a challenging task since only few instances are given for recognizing an unseen class. One way to alleviate this problem is to acquire a strong inductive bias via meta-learning on similar tasks. In this paper, we show that such inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes. Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations by maximizing the similarity of an image to its discriminative part. To mitigate the overfitting in few-shot classification caused by data scarcity, we further propose a part augmentation strategy by retrieving extra images from a base dataset. We conduct systematic studies on miniImageNet and tieredImageNet benchmarks. Remarkably, our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24% under 5-way 1-shot and 5-way 5-shot settings, which are comparable with state-of-the-art supervised methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.