Papers
Topics
Authors
Recent
2000 character limit reached

Spectrum Correction: Acoustic Scene Classification with Mismatched Recording Devices

Published 25 May 2021 in cs.SD, cs.LG, and eess.AS | (2105.11856v1)

Abstract: Machine learning algorithms, when trained on audio recordings from a limited set of devices, may not generalize well to samples recorded using other devices with different frequency responses. In this work, a relatively straightforward method is introduced to address this problem. Two variants of the approach are presented. First requires aligned examples from multiple devices, the second approach alleviates this requirement. This method works for both time and frequency domain representations of audio recordings. Further, a relation to standardization and Cepstral Mean Subtraction is analysed. The proposed approach becomes effective even when very few examples are provided. This method was developed during the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019 challenge and won the 1st place in the scenario with mis-matched recording devices with the accuracy of 75%. Source code for the experiments can be found online.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.