Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mixture of ELM based experts with trainable gating network (2105.11706v1)

Published 25 May 2021 in cs.LG

Abstract: Mixture of experts method is a neural network based ensemble learning that has great ability to improve the overall classification accuracy. This method is based on the divide and conquer principle, in which the problem space is divided between several experts by supervisition of gating network. In this paper, we propose an ensemble learning method based on mixture of experts which is named mixture of ELM based experts with trainable gating network (MEETG) to improve the computing cost and to speed up the learning process of ME. The structure of ME consists of multi layer perceptrons (MLPs) as base experts and gating network, in which gradient-based learning algorithm is applied for training the MLPs which is an iterative and time consuming process. In order to overcome on these problems, we use the advantages of extreme learning machine (ELM) for designing the structure of ME. ELM as a learning algorithm for single hidden-layer feed forward neural networks provides much faster learning process and better generalization ability in comparision with some other traditional learning algorithms. Also, in the proposed method a trainable gating network is applied to aggregate the outputs of the experts dynamically according to the input sample. Our experimental results and statistical analysis on 11 benchmark datasets confirm that MEETG has an acceptable performance in classification problems. Furthermore, our experimental results show that the proposed approach outperforms the original ELM on prediction stability and classification accuracy.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.