Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

TransLoc3D : Point Cloud based Large-scale Place Recognition using Adaptive Receptive Fields (2105.11605v3)

Published 25 May 2021 in cs.CV

Abstract: Place recognition plays an essential role in the field of autonomous driving and robot navigation. Point cloud based methods mainly focus on extracting global descriptors from local features of point clouds. Despite having achieved promising results, existing solutions neglect the following aspects, which may cause performance degradation: (1) huge size difference between objects in outdoor scenes; (2) moving objects that are unrelated to place recognition; (3) long-range contextual information. We illustrate that the above aspects bring challenges to extracting discriminative global descriptors. To mitigate these problems, we propose a novel method named TransLoc3D, utilizing adaptive receptive fields with a point-wise reweighting scheme to handle objects of different sizes while suppressing noises, and an external transformer to capture long-range feature dependencies. As opposed to existing architectures which adopt fixed and limited receptive fields, our method benefits from size-adaptive receptive fields as well as global contextual information, and outperforms current state-of-the-arts with significant improvements on popular datasets.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.