Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online learning of data-driven controllers for unknown switched linear systems (2105.11523v1)

Published 24 May 2021 in eess.SY, cs.SY, and math.OC

Abstract: Motivated by the goal of learning controllers for complex systems whose dynamics change over time, we consider the problem of designing control laws for systems that switch among a finite set of unknown discrete-time linear subsystems under unknown switching signals. To this end, we propose a method that uses data to directly design a control mechanism without any explicit identification step. Our approach is online, meaning that the data are collected over time while the system is evolving in closed-loop, and are directly used to iteratively update the controller. A major benefit of the proposed online implementation is therefore the ability of the controller to automatically adjust to changes in the operating mode of the system. We show that the proposed control mechanism guarantees stability of the closed-loop switched linear system provided that the switching is slow enough. Effectiveness of the proposed design technique is illustrated for two aerospace applications.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.