Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LuvHarris: A Practical Corner Detector for Event-cameras (2105.11443v2)

Published 24 May 2021 in cs.CV

Abstract: There have been a number of corner detection methods proposed for event cameras in the last years, since event-driven computer vision has become more accessible. Current state-of-the-art have either unsatisfactory accuracy or real-time performance when considered for practical use, for example when a camera is randomly moved in an unconstrained environment. In this paper, we present yet another method to perform corner detection, dubbed look-up event-Harris (luvHarris), that employs the Harris algorithm for high accuracy but manages an improved event throughput. Our method has two major contributions, 1. a novel "threshold ordinal event-surface" that removes certain tuning parameters and is well suited for Harris operations, and 2. an implementation of the Harris algorithm such that the computational load per event is minimised and computational heavy convolutions are performed only "as-fast-as-possible", i.e. only as computational resources are available. The result is a practical, real-time, and robust corner detector that runs more than 2.6x the speed of current state-of-the-art; a necessity when using high-resolution event-camera in real-time. We explain the considerations taken for the approach, compare the algorithm to current state-of-the-art in terms of computational performance and detection accuracy, and discuss the validity of the proposed approach for event cameras.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Arren Glover (9 papers)
  2. Aiko Dinale (2 papers)
  3. Simeon Bamford (1 paper)
  4. Chiara Bartolozzi (21 papers)
  5. Leandro de Souza Rosa (3 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.