Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cost-Accuracy Aware Adaptive Labeling for Active Learning (2105.11418v1)

Published 24 May 2021 in cs.LG and stat.AP

Abstract: Conventional active learning algorithms assume a single labeler that produces noiseless label at a given, fixed cost, and aim to achieve the best generalization performance for given classifier under a budget constraint. However, in many real settings, different labelers have different labeling costs and can yield different labeling accuracies. Moreover, a given labeler may exhibit different labeling accuracies for different instances. This setting can be referred to as active learning with diverse labelers with varying costs and accuracies, and it arises in many important real settings. It is therefore beneficial to understand how to effectively trade-off between labeling accuracy for different instances, labeling costs, as well as the informativeness of training instances, so as to achieve the best generalization performance at the lowest labeling cost. In this paper, we propose a new algorithm for selecting instances, labelers (and their corresponding costs and labeling accuracies), that employs generalization bound of learning with label noise to select informative instances and labelers so as to achieve higher generalization accuracy at a lower cost. Our proposed algorithm demonstrates state-of-the-art performance on five UCI and a real crowdsourcing dataset.

Citations (19)

Summary

We haven't generated a summary for this paper yet.