Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Change Point Detection in Nonstationary Sub-Hourly Wind Time Series (2105.11353v1)

Published 24 May 2021 in stat.ME, cs.SY, eess.SY, and stat.AP

Abstract: In this paper, we present a change point detection method for detecting change points in multivariate nonstationary wind speed time series. The change point method identifies changes in the covariance structure and decomposes the nonstationary multivariate time series into stationary segments. We also present parametric and nonparametric simulation techniques to simulate new wind time series within each stationary segment. The proposed simulation methods retain statistical properties of the original time series and therefore, can be employed for simulation-based analysis of power systems planning and operations problems. We demonstrate the capabilities of the change point detection method through computational experiments conducted on wind speed time series at five-minute resolution. We also conduct experiments on the economic dispatch problem to illustrate the impact of nonstationarity in wind generation on conventional generation and location marginal prices.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.